张超

教授

基本情况

张超,1990年生,土木工程学院教授,博士生导师,学院副院长,地下空间开发先进技术与智能装备湖南省工程研究中心副主任;国家高层次青年人才,湖南省100个科技创新人才,湖南大学岳麓学者、青矩学者;成果曾获美国土木工程学会学术文章最高奖诺曼奖章等重要荣誉。研究兴趣兼顾理论深度和工程实际需求。具体研究兴趣如下:

基础理论研究方面:

(1)非饱和与特殊土力学(膨胀土、深层土、冻土、火壤水冰);

(2)多孔介质物理及计算方法(孔隙水相变、分子模拟)。

关键技术研究方面:

(3)地下工程智能建造技术(深度学习、AI for Science、数字孪生技术);

(4)深层地下结构动力灾变和韧性设计(灾变场景精细化模拟、高韧性材料与结构)。

毕业生去向:已毕业硕士生9名,其中2名留湖南大学继续攻博,4名获牛津大学等国际一流大学全额奖学金博士职位,3名就职于国企。

欢迎有志青年加入课题组从事硕士、博士和博士后研究。课题组提供具有竞争力的薪水待遇和充足国际交流机会。

实验室及学生介绍英文主页:https://chaozhanghnu.github.io

联系方式:chao_zhang@hnu.edu.cn

教育及工作经历

2019年至今,湖南大学土木工程学院,教授

2019年11月,瑞士苏黎世联邦理工学院,访问教授

2017年- 2019年, 美国科罗拉多矿业大学,博士后

2014年- 2017年, 美国密歇根理工大学,土木工程,博士

2012年- 2014年, 湖南大学土木工程学院,结构工程方向,硕士

2008年- 2012年, 湖南大学土木工程学院,建筑工程方向,学士

科研项目

目前主持在研国家重点研发计划子课题2项、国家自然科学基金面上项目1项、国家自然科学基金重大项目子课题1项;国家级人才项目1项、省级人才项目1项。参与国家自然科学基金重点项目1项、省级创新团队项目1项。

[1]国家重点研发计划课题子课题:"融合服役环境的地下工程装备全机数字样机构建技术",主持。

[2]国家重点研发计划课题子课题:"生态化建材在长江中游海绵城市中的典型应用技术研究",主持。

[3]国家自然科学基金面上项目:膨胀土水化过程的多尺度物理化学机理研究,主持。

[4]国家自然科学基金重大项目子课题:"超大城市深层地下空间施工扰动-灾变机理与安全控制",主持。

[5]国家自然科学基金重点项目:城市地下空间建设环境下地下结构安全控制理论及方法,参与。

学术成果

研究成果发表在Reviews of Geophysics、Geophysical Research Letters等综合性期刊,Géotechnique、ASCE JGGE等岩土权威期刊,土木工程学报、岩土工程学报等中文权威期刊。已发表国际期刊文章50余篇,其中ASCE JGGE和Géotechnique期刊文章12篇,影响因子大于20期刊文章1篇。

发表论文:

30篇代表性国际期刊论文(† 为本人指导研究生,*为通讯作者):

[1]Gou, L.†, Zhang, C.*, Lu, N., & Hu, S.†(2023). A Soil Hydraulic Conductivity Equation Incorporating Adsorption and Capillarity. Journal of Geotechnical and Geoenvironmental Engineering, 149(8), 04023056.

[2]Zhang, C., Hu, S.†, Qiu, Z.†, & Lu, N. (2023). A poroelasticity theory for soil incorporating adsorption and capillarity. Géotechnique, 1-18.

[3]Hu, S.†, & Zhang, C.* (2023). A sorption isotherm model for soil incorporating external and internal surface adsorption, and capillarity. Canadian Geotechnical Journal.

[4]Zhao, N.†, Hu, S.†, Zhang, C.*, Li, F.*, & Chen, R. (2023). Physical Origins of Freezing and Melting Temperature Depressions of Water in Millimeter-Sized Pores. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 131851.

[5]Gou, L.†, Zhang, C.*, Hu, S.†, Chen, R., & Dong, Y. (2023). Semi-analytical solutions for soil consolidation induced by drying. Acta Geotechnica, 18(2), 739-755.

[6]Chen, R., Lang, Z.†*, Zhang, C.*, Zhao, N.†, & Deng, P. (2023). A paradigm for seismic resilience assessment of subway system. Tunnelling and Underground Space Technology, 135, 105061.

[7]Ren, Y.†, Zhang, C.*, Zhu, M.†, Chen, R., & Wang, J.†(2023). Significance and formulation of ground loss in tunneling-induced settlement prediction: a data-driven study. Acta Geotechnica, 1-16.

[8]Hu, S.†, Zhang, C.*, & Lu, N. (2023). Quantifying Coupling Effects Between Soil Matric Potential and Osmotic Potential. Water Resources Research, 59(2), e2022WR033779.

[9]Zhang, C., Gou, L.†, Hu, S.†*, & Lu, N. (2022). A thermodynamic formulation of water potential in soil. Water Resources Research, 58(9), e2022WR032369.

[10]Luo, S., Lu, N.*, Zhang, C., & Likos, W. (2022). Soil water potential: A historical perspective and recent breakthroughs. Vadose Zone Journal, 21(4), e20203.

[11]Wang, J.†, Qiu, Z.†, Zhang, C.*, & Chen, R. (2022). Assessing temperature dependence of soil water adsorption strength by molecular simulation. Géotechnique Letters, 12(2), 125-130.

[12]Zhang, C.*, Hu, S.†, & Lu, N. (2022). Unified elastic modulus characteristic curve equation for variably saturated soils. Journal of Geotechnical and Geoenvironmental Engineering, 148(1), 04021171.

[13]Zhang, C., Wang, J.†, & Chen, R.* (2021). Water adsorption isotherms on soil external particle surface by molecular simulation. Computers and Geotechnics, 139, 104432.

[14]Zhang, C.*, & Lu, N. (2021). Soil sorptive potential–based paradigm for soil freezing curves. Journal of Geotechnical and Geoenvironmental Engineering, 147(9), 04021086.

[15]Zhang, C., & Lu, N.* (2020). Unified effective stress equation for soil. Journal of Engineering Mechanics, 146(2), 04019135.

[16]Lu, N., & Zhang, C.* (2020). Separating external and internal surface areas of soil particles. Journal of Geotechnical and Geoenvironmental Engineering, 146(2), 04019126.

[17]Zhang, C., & Lu, N*. (2020) Soil sorptive potential: Its determination and predicting soil water density. Journal of Geotechnical and Geoenvironmental Engineering. 146 (1), 04019118.

[18]Lu, N, & Zhang, C*. (2019) Soil sorptive potential: Concept, theory, and verification. Journal of Geotechnical and Geoenvironmental Engineering, 145 (4), 04019006.

[19]Zhang, C., & Lu, N*. (2019) Unitary definition of matric suction. Journal of Geotechnical and Geoenvironmental Engineering, 145 (2), 02818004.

[20]Zhang, C., & Lu, N*. (2019) Augmented Brunauer–Emmett–Teller Equation for Water Adsorption on Soils. Vadose Zone Journal. 18 (1), 1-12.

[21]Zhang, C., & Lu, N*. (2018) What is the range of soil water density: Critical review with a unified model. Reviews of Geophysics, 56.

[22]Zhang, C., & Lu, N*. (2018) Measuring soil water density by helium pycnometer. Journal of Geotechnical and Geoenvironmental Engineering, 144(9): 02818002.

[23]Zhang, C., & Liu, Z*. (2018). Freezing of water confined in porous materials: Role of adsorption and unfreezable threshold. Acta Geotechnica, 13 (5), 1203–1213.

[24]Zhang, C., Liu, Z.*, & Deng, P. (2018). Using molecular dynamics to unravel the phase composition behavior of nano- size pores in frozen soils: Does Young-Laplace equation apply in the low temperature range. Canadian Geotechnical Journal, 55 (8), 1144–1153.

[25]Zhang, C., Deng, P.*, & Ke, W. (2018). Kinematic response of rectangular piles under S waves. Computers and Geotechnics, 102, 229-237.

[26]Zhang, C., Deng, P.*, & Ke, W. (2018). Assessing physical mechanisms related to kinematic soil-pile interaction. Soil Dynamics and Earthquake Engineering, 114, 22-26.

[27]Zhang, C., Dong, Y.*, & Liu, Z. (2017). Lowest matric potential in quartz: Metadynamics evidence. Geophysical Research Letters, 44(4), 1706-1713.

[28]Zhang, C., Liu, Q.*, & Deng, P. (2017). Surface motion of a half space with a semi-cylindrical canyon under P, SV and Rayleigh waves. Bulletin of the Seismological Society of America 107(3).

[29]Zhang, C., Liu, Z.*, & Deng, P. (2016). Atomistic‐scale investigation of effective stress principle of saturated porous materials by molecular dynamics. Geophysical Research Letters, 1944-8007.

[30]Zhang, C., Liu, Z.*, & Deng, P. (2016). Contact angle of soil minerals: A molecular dynamics study. Computers and Geotechnics, 75, 48-56.

发明专利:

[1]张超,耿自恒,陈仁朋 等.一种实时预测盾构机前方地质条件的方法.(ZL202210817706.1)

[2]张超,朱闽湘,陈仁朋 等.一种基于深度学习的盾构机土舱压力空间分布预测方法.(ZL202210807021.9)

[3]张超,杨宇涵,陈仁朋 等.一种实时土体类别识别方法、系统及一种挖掘机.(ZL202110152438.1)

[4]张超,刘拯安,陈仁朋 等.一种地层应力场和位移场控制试验装置及方法.(ZL202210784931.X)

[5]张超,朱闽湘,陈仁朋 等.一种实时土体类别识别方法、系统及一种盾构机.(ZL202110152053.5)

[6]陈仁朋,张超,刘拯安 等.一种基于数字孪生的近接工程建设荷载试验方法及系统.(ZL202210115304.7)

[7]张超,耿自恒,陈仁朋 等.基于振动响应实时识别盾构机前方地质条件的方法及系统.(ZL202310571895.3)

[8]张超,张欢,郭帅成 等.一种可快速拼装的相变隔热层-UHPC组合盾构管片.(ZL202210934951.0)

奖励与荣誉

[1]美国土木工程学会,诺曼奖章(Norman Medal),2021

[2]教育部科技进步一等奖(参与),2020

[3]湖南省科技进步一等奖(参与),2021

[4]湖南大学优秀教师新人奖,2021

[5]湖南大学青年教工示范岗,2021

[6] Editor’s Choice paper, ASCE Journal of Engineering Mechanics, 2020

[7] Editor’s Choice paper, ASCE Journal of Geotechnical and Geoenvironmental Engineering, 2020

[8]湖南大学熊晓鸽奖学金

[9]湖南省优秀本科毕业生

[10]湖南省优秀研究生毕业生

[11] Wilbur Haas graduate research excellence award

[12] Dean's award for outstanding scholarship

联系我们

    湖南大学-国家卓越工程师学院 版权所有

    校址:湖南省长沙市岳麓区麓山南路麓山门 | 邮箱:zgxy@hnu.edu.cn | 邮编:410082

    湘教QS4-201312-010059   湘ICP备09007699号

  • 微信公众号