宋国胜

教授

基本情况

宋国胜,湖南大学化学化工学院、二级教授、博士生导师,化学生物传感与计量学国家重点实验室固定成员。围绕活体功能成像存在的难题,开展“化学-材料-医学影像”交叉融合的医学成像前沿研究。近五年来相关成果以通讯作者身份发表在Nature Materials (1篇)、Nature Biomedical Engineering(3篇)、Nature Photonics (1篇), Chem(3篇)、Science Advances (1篇)、Nat. Common.(3篇)、J. Am. Chem. Soc.(4篇)、Angew. Chem.(5篇)、Chem. Rev.(1篇)、Chem. Soc. Rev.(1篇)、Coord. Chem. Rev.(1篇)、Nano Lett.(3篇)、ACS Nano (2篇)、Adv. Funct. Mater.(1篇)、Nano Today (2篇)、Eur. J. Nucl. Med. Mol. Imaging(1篇)、Nano Research (2篇)、Theranostics(2篇)、Small(1篇);Sci. Bull.(2篇)、Research(1篇)、Exploration(1篇)、CCS Chem.(1篇)、Sci. China Chem.(1篇)。其中影响因子>10的论文: 30余篇。论文总引用> 12000次。“H-index”为57。

邮箱:songgs@hnu.edu.cn; songguosheng12@sina.com

教育及工作经历

2014年博士毕业于东华大学(导师:胡俊青教授);随后在苏州大学(导师:刘庄教授)和美国斯坦福大学(导师:Prof. Jianghong Rao,Stanford Medicine )从事博士后研究。

2018年入职湖南大学。

科研项目

[1]国家重点研发计划纳米专项-课题负责人

[2]国家自然科学基金-联合基金-重点项目-项目负责人

[3]国家自然科学基金-面上项目-项目负责人

[4]国家自然科学基金-青年基金-项目负责人

[5]湖南省重点研发计划-科技创新引领项目-子课题负责人

Research Project

[1]Joint Funds of the National Natural Science Foundation of China, Key Program Activatable Near-infrared Photosensitizer for Precise Cancer Therapy, 2022-01, Leader of Project

[2]National Natural Science Foundation of China, Development of Hollow Iron Oxide @ Perfluorocarbon / Oxygen Nanoplatform for Synergistic Enhancement of Radiotherapy, 2019-01, Leader of Project

[3]National Natural Science Foundation of China, Design of Matrix Metalloproteinase-responsive Multimodal Nanoprobe for Precise Surgical Navigation, 2019-01, Leader of Project

[4]Hunan Provincial Research Foundation, Science and Technology Innovation Project, Development of Early Diagnosis Technology of Primary Liver Cancer Liquid Biopsy, 2021-01, Leader of Sub-Project

[5]National Key R&D Program of China, Key Subject of“Nanotechnology”, Nanometer Detection and Application of Epigenetically Related Reactive Oxygen Species in Atherosclerosis, 2019-11, Researcher

学术成果

发表论文:

[1]Lu C., Zhang X.*, Song G.*, et al; Responsive probes for in vivo magnetic resonance imaging of nitric oxide, Nature Materials, 2024, (IF=37.2).DOI:doi.org/10.1038/s41563-024-02054-0

[2]Wang Y., Song G.*, Zhang X.*, Tan W.*, et al; In vivo ultrasound-induced luminescence molecular imaging, Nature Photonics2024, 18, 334-343, (IF=32.3),DOI:doi.org/10.1038/s41566-024-01387-1

[3]Wang Y, Song G.* Zhang X.*, et al; Ultrabright and ultrafast afterglow imaging in vivo via nanoparticles made of trianthracene derivatives, Nature Biomedical Engineering 2024, Accepted (IF =29) DOI:doi.org/10.1038/s41551-024-01274-8

[4]ZhangC.,ZhangX.*,RaoJ.*,SongG.*,etal;Magnetic-susceptibility-dependent ratiometric probes for enhancing quantitative MRI, Nature BiomedicalEngineering 2024. (IF=28.1),OI:doi.org/10.1038/s41551-024-01286-4

[5]Song G*., Rao J.* et al. FeCo nanoparticles as ultrasensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties. Nature Biomedical Engineering 2020,4, 325. (IF = 28.1) DOI:doi.org/10.1038/s41551-019-0506-0

[6]Highlighted by: Versatile iron cobalt nanoparticles for theranostics.NatureBiomedicalEngineering2020,4,252-253.DOI:doi.org/10.1038/s41551-020-0532-y

[7]Ma Y., Song G.*, et al; Simultaneous In Vivo Imaging of Neutrophil Elastase and Oxidative Stress in Atherosclerotic Plaques Using a Unimolecular Photoacoustic Probe, Angew. Chem. Int. Ed. 2024, 63, e202411840 (IF = 16.1 ). DOI:doi.org/10.1002/anie.202411840

[8]Zhang C., Song G.*, et al; Ultrathin Gd-Oxide Nanosheet as Ultrasensitive Companion Diagnostic Tool for MR Imaging and Therapy of Submillimeter Microhepatocellular Carcinoma, Nano Letters, 2024, 24, 11002−11011 (IF = 9.6). DOI:doi.org/10.1021/acs.nanolett.4c03078

[9]Guan G., Song G.*, et al; Responsive Magnetic Particle Imaging Tracer: Overcoming “Always-On” Limitation, Eliminating Interference, and Ensuring Safety in Adaptive Therapy, Advanced Materials. 2024, 36, 2409117 (IF=27.4). DOI:doi.org/10.1002/adma.202409117

[10]Liu H., Song G.*, et al; Enhanced Real-Time Monitoring of Catalytic Therapy Efficacy with Dual-Channel MRI and Fluorescent Platform, Advanced Functional Materials. 2024, 2412848 (IF=18.3). DOI:doi.org/10.1002/adfm.202412848

[11]Yue R., Song G.*, et al; Imaging-Guided Companion Diagnostics in Radiotherapy by Monitoring APE1 Activity with Afterglow and MRI Imaging,NatureCommunications2024,15,6349(IF=14.7).DOI:doi.org/10.1038/s41467-024-50688-0

[12]Lv J., Huan S.*, Kang H.*, Song G.*, et al; Enzyme-activated Nanomaterials for MR Imaging and Tumor Therapy,Coordination Chemistry Reviews2024,510,215842,(IF=20.3),DOI:doi.org/10.1016/j.ccr.2024.215842

[13]Yin R., Song G.*, et al; Medical imaging-based companion diagnostics for solid tumors, EngMedicine 2024,1,100009,

DOI:doi.org/10.1016/j.engmed.2024.100009

[14]Xu H., Song G.*, Hu Q.*, Kang H.*, Yoon J.*, et al; Remote Control of Energy Transformation‐Based Cancer Imaging and Therapy, Advanced Materials, 2024, 36, 2402806, (IF=27.4),

DOI:doi.org/10.1002/adma.202402806

[15] Wang Y., Song G.*, et al; Enhancing Fractionated Cancer Therapy: A Triple-Anthracene Photosensitizer Unleashes Long-Persistent PhotodynamicandLuminousEfficacy,J.Am.Chem.Soc. 2024,146, 6252–6265 (IF=15),DOI:doi.org/10.1021/jacs.3c14387

[16]Xu J., Song G.*, et al; Enhancing Lipid Peroxidation via Radical Chain Transfer Reaction for MRI guided and Effective Cancer Therapy in Mice,ScienceBulletin2023,69,636-647,(IF=18.9)DOI:doi.org/10.1016/j.scib.2023.12.036

[17]Guan G., Song G.*, Shen X*, et al; Ultrasmall PtMn nanoparticles as sensitive manganese release modulator for specificity cancer theranostics, Journal of Nanobiotechnology, 2023, 21, 434.(IF=10.2) DOI:doi.org/10.1186/s12951-023-02172-y

[18]Lei L., Song G.* ,et al; Noninvasive Imaging of Tumor Glycolysis and Chemotherapeutic Resistance via De Novo Design of Molecular Afterglow Scaffold, J. Am. Chem. Soc. 2023, 145, 44, 24386-24400 (IF=15) DOI:doi.org/10.1021/jacs.3c09473

[19]Ma Y., Song G.*, Zhang X.*,et al; Oxidative stress biomarker triggered multiplexed tool for auxiliary diagnosis of atherosclerosis, Science Advances 2023, 9, eadh1037 (IF=13.6) DOI: doi.org/10.1126/sciadv.adh1037

[20]Ma Y., Song G.*, Zhang X.*,et al; Engineering of cyanine-based nanoplatform with tunable response toward reactive species for ratiometric NIR-II fluorescent imaging in mice, Science Bulletin 2023, 68, 2382-2390 (IF=18.9) DOI:doi.org/10.1016/j.scib.2023.08.041

[21]Zhang Q., Song G.* ,et al; Synthesis of renal clearable magnetic nanoparticles for magnetic resonance imaging and imaging guided therapy, WIREs Nanomedicine & Nanobiotechnology 2024, 16, e1929 (IF=8.6) DOI:doi.org/10.1002/wnan.1929

[22]Ma Y., Song G.* Zhang X.*, et al; Rational Design of a Double-Locked Photoacoustic Probe for Precise In Vivo Imaging of Cathepsin B in Atherosclerotic Plaques,J. Am. Chem. Soc., 2023, 145, 32, 17881-17891. (IF=15) DOI:doi.org/10.1021/jacs.3c04981

[22]Lu C., Song, G.*, et al; Tumor microenvironment-tailored nanoplatform for companion diagnostic applications of precise cancer therapy.Chem,2023,9,3185–3211,(IF=23.5)DOI:doi.org/10.1016/j.chempr.2023.06.011

[23]Zhang C., Song G.* et al; Dynamic-Reversible MRI Nanoprobe for Continuous Imaging Redox Homeostasis in Hepatic Ischemia-Reperfusion Injury, ACS Nano, 2023, 17, 10, 9529–9542. (IF =16) DOI: doi.org/10.1021/acsnano.3c02265

[24]Lei L., Yin X.*, Song G.*, et al; Zinc–Carnosine Metallodrug Network as Dual Metabolism Inhibitor Overcoming Metabolic Reprogramming for Efficient Cancer Therapy, Nano Lett. 2023, 23, 7, 2659 (IF =12) DOI:doi.org/10.1021/acs.nanolett.2c05029

[25]Wu N., Zhou M.*, He M.*, Song G.* et al; Semiconducting Polymer Nanoparticles - Manganese Based Chemiluminescent Platform for Determining Total Antioxidant Capacity in Diabetic Mice, Anal. Chem. 2023, 95, 16, 6603–6611 (IF =6) DOI:doi.org/10.1021/acs.analchem.2c05624

[26]Liu Y., Zhang X.*, Song G.*, et al; Four-in-one” design of hemicyanine-based modular scaffold for high-contrast activatable molecular afterglow imaging, J. Am. Chem. Soc. 2023,145, 9, 5134–5144 (IF =15) DOI:doi.org/10.1021/jacs.2c11466

[27]Yue R., Song G.*, et al; GSH/APE1 Cascade-Activated Nanoplatform for Imaging Therapy Resistance Dynamics and Enzyme-Mediated Adaptive Ferroptosis. ACS Nano, 2023, 17, 14, 13792–13810 (IF=17.1) DOI:doi.org/10.1021/acsnano.3c03443

[28]Chen B., Yue R.*, Song G.* , et al; Stimuli-responsive switchable MRI nanoprobe for tumor theranostics, Nano today,2023, 51, 101931 (IF=17.4) DOI:doi.org/10.1016/j.nantod.2023.101931

[29]Xu L., Song G.*, et al;Imaging Carotid Plaque Burden in Living Mice via Hybrid Semiconducting Polymer Nanoparticles-Based Near-Infrared-II Fluorescence and Magnetic Resonance Imaging. Research, 2023,6, 0186. DOI:doi/10.34133/research.0186

[30]Liao S., Song G.*, et al; Emerging biomedical imaging-based companion diagnostics for precision medicine, iScience, 2023, 26, 107277.(IF=5.8) DOI: doi.org/10.1016/j.isci.2023.107277

[31]Shen H., Wang Y.*, Huan S.*, Song G.*, et al; Organic Afterglow Nanoparticles in Bioapplications, Chem.Eur. J.2023,29,e202301209. (IF=4.3) DOI:doi.org/10.1002/chem.202301209

[32]Dong Z., Song G.*, et al; The rational design of nanozymes for imaging-monitored cancer therapy,J. Mater. Chem. B, 2023,11, 5933-5952. (IF=7). DOI:doi.org/10.1039/D3TB00464C

[33]Peng Z., Song G.*, Tian J.*, Du Y.*, et al; Sensitive and quantitative in vivo analysis of PD-L1 using magnetic particle imaging and imaging-guided immunotherapy, European Journal of Nuclear Medicine and Molecular Imaging, 2023, 50, 1291–1305 (IF = 10) DOI:doi.org/10.1007/s00259-022-06083-2

[33]Li X., Zhou Y.*, Song G.* et al; Recent Development of pH-Responsive Theranostic Nanoplatforms for MRI-guided Cancer Therapy, Exploration, 2023,3(3), 20220002, DOI:doi.org/10.1002/EXP.20220002

[34]Dong Z., Song G.* et al; Overcoming Hypoxia‐Induced Ferroptosis Resistance via 19F/1H‐MRI Traceable Core‐Shell Nanostructure. Angew. Chem. Int. Ed. 2022, 61, e202206074, (IF=16.6) DOI:doi.org/10.1002/ange.202206074

[35]Guan G.; Song G.* et al; Ternary Alloy PtWMn as a Mn Nanoreservoir for High-field MRI Monitoring and Highly Selective Ferroptosis Therapy. Angew. Chem. Int. Ed. 2022. 134 (31), e202117229. (IF =16.6) Doi:doi.org/10.1002/anie.202117229

[36]Liu Y.; Song G.*, Zhang X.* et al; Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging. Nat. Commun. 2022, 13, 2216 (IF =16.6) DOI:doi.org/10.1038/s41467-022-29894-1

[37]Yang Y.; Song G.* et al; Degradable Magnetic Nanoplatform with Hydroxide Ions Triggered Photoacoustic, MR Imaging, and Photothermal Conversion for Precise Cancer Theranostic;Nano Lett. 2022, 22 (8), 3228-3235 (IF =12) DOI:doi.org/10.1021/acs.nanolett.1c04804

[38]Yue R.; Song G.* et al; Dual key co-activated nanoplatform for switchable MRI monitoring accurate ferroptosis-based synergistic therapy, Chem, 2022, 8, 1956-1981 (IF =25) DOI:doi.org/10.1016/j.chempr.2022.03.009

[39]Highlighted by: Ferroptosis-based image-guided chemotherapy, Matter, 2023, 6, 666-668. DOI:doi.org/10.1016/j.matt.2023.01.033

[40]Liu Y.; Song G.*, Zhang X.* et al, Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications, Chem. Rev. 2022, 122, 6, 6850–6918 (IF =60) DOI:doi.org/10.1021/acs.chemrev.1c00875

[41]Huang H.*, Song G.*, Zhou Y.* et al, One-step reduction-encapsulated synthesis of Ag@ polydopamine multicore-shell nanosystem for enhanced photoacoustic imaging and photothermal-chemodynamic cancer therapy,Nano Research 2022, 15 (9), 8291-8303 (IF=10) DOI:doi.org/10.1007/s12274-022-4474-4

[42]Lei L., Song G.*, Zhang X.* et al, Metal-fluorouracil networks with disruption of mitochondrion enhanced ferroptosis for synergistic immune activation, Theranostics 2022, 12, 6207-6222 (IF = 11) DOI:doi.org/10.7150/thno.75323

[43]Yin B., Huan S.*, Song G.*, et al, Tongue cancer tailored photosensitizers for NIR-II fluorescence imaging guided precise treatment, Nano Today 2022, 45, 101550(IF=18)DOI:doi.org/10.1016/j.nantod.2022.101550

[44]Wang P., Yin X.*, Song G.* et al, Nanovoid-confinement and click-activated nanoreactor for synchronous delivery of prodrug pairs and precise photodynamic therapy, Nano Research, 2022,15, 9264–9273. (IF=10) DOI:doi.org/10.1007/s12274-022-4615-9 

[45]Zhang X., Song G.* et al, Recent development of a magneto-optical nanoplatform for multimodality imaging of pancreatic ductal adenocarcinoma, Nanoscale 2022, 14, 3306-3323 (IF=8) DOI:doi.org/10.1039/D1NR08394E

[46]Liao S., Liu S.*, Song G.* et al, A novel afterglow nanoreporter for monitoring cancer therapy, Theranostics 2022, 12, 6883-6897. (IF = 11) DOI:doi.org/10.7150/thno.77457

[47]Teng L., Song G.* et al, Smart Nanozyme Platform with Activity-Correlated Ratiometric Molecular Imaging for Predicating Therapeutic Effect, Angew. Chem. Int. Ed. 2021, 60, 26142–26150. (IF = 16.6) DOI:doi.org/10.1002/anie.202110427

[48]Wu L., Suzuki T.*, Song G.*, Fan Q.*, Ye D.* et al, Generation of hydroxyl radical-activatable ratiometric near-infrared bimodal probes for early monitoring of tumor response to therapy, Nat. Commun. 2021, 12, 6145.(IF = 16.6) DOI:doi.org/10.1038/s41467-021-26380-y

[49]Lu C., Song G.*, Rao J.* et al, Engineering of magnetic nanoparticles as magnetic particle imaging tracers, Chemical Society Reviews, 2021, 14 , 8102-8146 (IF = 54) DOI:doi.org/10.1039/D0CS00260G

[50]Liu H., Han L.*, Song G.* et al, Optical - Magnetic probe for evaluating cancer therapy, Coordination Chemistry Reviews, 2021,441, 213978 (IF = 20.6) DOI:doi.org/10.1016/j.ccr.2021.213978

[51]Ma Y., Song G.*, Zhang X.* et al, Ratiometric Semiconducting Polymer Nanoparticle for Reliable Photoacoustic Imaging of Pneumonia-Induced Vulnerable Atherosclerotic Plaque in Vivo, Nano Letters, 2021, 21, 4484-4493 (IF = 12) DOI:doi.org/10.1021/acs.nanolett.1c01359

[52]Shi L., Song G.*, et al; An Acidity‐Unlocked Nanoplatform Enables Self‐Boosting ROS Generation through Upregulation of Lactate for Highly Specific Chemodynamic Therapy, Angew. Chem. Int. Ed.2021, 60, 9562-9572 (IF = 16.6) DOI:doi.org/10.1002/anie.202014415

[53]Chen F., Song G.* et al; Activatable Magnetic/Photoacoustic Nanoplatform for Redox-Unlocked Deep-Tissue Molecular Imaging In Vivo via Prussian Blue Nanoprobe. Analytical chemistry 2020, 92, 13452-13461. (IF =6) DOI:doi.org/10.1021/acs.analchem.0c02859

[54]Zhang C., Song G.* et al, H2S-Activated “One-Key Triple-Lock” Bis-Metal Coordination Network for Visualizing Precise Therapy of Colon Cancer. CCS Chemistry 2020, 3, 2126-2142. DOI:doi.org/10.31635/ccschem.020.202000369

[55]Lu C., Song G.* et al, Light-free Generation of Singlet Oxygen through Manganese-Thiophene Nanosystems for pH-Responsive Chemiluminescence Imaging and Tumor Therapy. Chem 2020, 6, 2314-2334. (IF = 19) DOI:doi.org/10.1016/j.chempr.2020.06.024

Highlighted by: Chemiluminescent Nanosystems for Imaging Cancer Chemodynamic Therapy. Chem 2020, 6, 2127-2129. DOI:doi.org/10.1016/j.chempr.2020.08.013

[56]Yuan H., Song G.* et al. Copper-Thioguanine Metallodrug with Self-reinforcing Circular Catalysis for Activatable MRI Imaging and Amplifying Specificity of Cancer Therapy, Science China Chemistry, 2020, 63, 924-935 (IF = 6) DOI:doi.org/10.1007/s11426-020-9738-5

[57]Wang B., Song G.* et al. Oxygen-Embedded Pentacene Based Near-Infrared Chemiluminescent Nanoprobe for Highly Selective and Sensitive Visualization of Peroxynitrite In Vivo, Anal. Chem. 2020, 92, 4154.(IF = 6) DOI:doi.org/10.1021/acs.analchem.0c00329

[58]Wang Y., Song G.* et al. Reactive Oxygen Correlated Chemiluminescent Imaging of Semiconducting Polymer Nanoplatform for Monitoring Chemodynamic Therapy. Nano Lett. 2020, 9, 6371. (IF = 12) DOI:doi.org/10.1021/acs.nanolett.9b03556

[59]Wang P., Song G.*, Zhang X.* et al. In Vivo Monitoring Therapeutic Response by Self-Reporting Upconverting Covalent Organic Framework Nanoplatform, Chem. Sci., 2020,11, 1299-1306. (IF = 9.5) DOI:doi.org/10.1039/C9SC04875H 

[60]Teng L., Song G.*, Zhang X.* et al. Nitric Oxide-Activated "Dual-Key-One-Lock" Nanoprobe for in Vivo Molecular Imaging and High-Specificity Cancer Therapy. J. Am. Chem. Soc. 2019, 141, 13572. (IF = 14) DOI:doi.org/10.1021/jacs.9b05901

[61]Yin B., Song G.*, et. al. Oxygen-embedded Quinoidal Acene Based Semiconducting Chromophore Nanoprobe for Amplified Photoacoustic Imaging and Photothermal Therapy. Anal. Chem. 2019, 91, 15275-15283, (IF = 6) DOI:10.1021/acs.analchem.9b04429.

[62]Zhang C., Yin X.*, Song G.* et al. Two-Photon Supramolecular Nanoplatform for Ratiometric Bioimaging.Anal. Chem. 2019, 91, 6371. (IF = 6) DOI:doi.org/10.1021/acs.analchem.9b01455

[63]Yin S., Song, G.*, Yin X.*, Zhang X.*, et al. Persistent Regulation of Tumor Microenvironment via Circulating Catalysis of MnFe2O4@Metal-Organic Frameworks for Enhanced Photodynamic Therapy. Adv. Funct. Mater. 2019, 29, 1901417. (IF = 15) DOI:doi.org/10.1002/adfm.201901417

[64]Song G., Rao J.* et al., A Magneto-Optical Nanoplatform for Multimodality Imaging of Tumors in Mice. ACS Nano 2019, 13, 7750. (IF = 14) DOI:doi.org/10.1021/acsnano.9b01436

[65]Song G., Rao J.* et al Janus Iron Oxides @ Semiconducting Polymer Nanoparticle Tracer for Cell Tracking by Magnetic Particle Imaging. Nano Lett. 2018, 18, 182. (IF = 12) DOI:doi.org/10.1021/acs.nanolett.7b03829

奖励与荣誉

[1]“长江学者奖励计划”-青年项目

[2]湖南省“芙蓉学者”特聘教授

[3]科睿唯安“全球高被引科学家”交叉学科

[4]湖南省化学化工学会-青年化学奖

[5]湖南省“湖湘青年英才”支持计划

联系我们

    湖南大学-国家卓越工程师学院 版权所有

    校址:湖南省长沙市岳麓区麓山南路麓山门 | 邮箱:zgxy@hnu.edu.cn | 邮编:410082

    湘教QS4-201312-010059   湘ICP备09007699号

  • 微信公众号