史俊峰

教授

基本情况

史俊峰,湖南大学生命医学交叉研究院教授/博士生导师、国家高层次青年人才、校学术委员会委员。长期从事多肽医药工程的研究工作,在Nat. Commun.、J. Am. Chem. Soc.、Angew. Chem. In. Ed.等国际高水平杂志上发表论文80篇,引用次数过6500次,H-index为38(Google Scholar),成果多次被国家媒体C@EN、科学报、湖南日报等媒体报道,并参与1部英文专著撰写。专利方面,申请及获批的专利14个,其中PCT专利3个,获授权美国专利1个。目前主持包括国家自科基金、湖南省科技创新人才计划、生物医药公司横向项目14项。

联系方式:Jeff-shi@hnu.edu.cn

个人网站:https://www.x-mol.com/groups/Shi_Junfeng

基本情况

1973年出生,1992年本科毕业于湖南师范大学生命科学院,1999年获湖南师范大学动物学硕士学位,2003年获湖南大学分析博士学位,2006年晋升为湖南大学教授、担任博士生导师。2009-2010年在美国斯坦福大学做访问学者。主要研究领域为生物功能化纳米材料的肿瘤、病原微生物和重要生物活性分子检测以及活体分子成像和药物控释载体。现是湖南大学化学生物传感与计量学国家重点实验室副主任、生物学院副院长,先后承担了国家自然科学基金项目、国际合作重大专项课题、国家863科技计划重大项目子课题等国家、省部级科研项目20余项。在Acc. Chem. Res. J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Anal. Chem.、Biomaterials等国际知名杂志发表SCI源刊论文140余篇。曾获“国家自然科学二等奖”、“湖南省自然科学一等奖”、“湖南省科技进步一等奖”、“全国五一巾帼标兵”、第十四届“湖南青年五四奖章”、 湖南省总工会“芙蓉百岗明星”、“湖南大学科研标兵”、“湖南大学智勇杰出教师奖”、“湖南大学优秀共产党员”、“湖南大学优秀教师”湖南省优秀博士学位论文奖(2005年)、全国百篇优秀博士学位论文提名奖(2005年)等多项奖励和荣誉。

教育及工作经历

2019 -至今,湖南大学,教授

2015.11 - 2018.11,美国国立癌症研究所(NCI,NIH),博士后,导师:Dr. Joel Schneider

2015.08 - 2015.10,美国布兰迪斯大学,博士后,导师:Dr. Bing Xu

2009.08 - 2015.08,美国布兰迪斯大学,化学系,Ph.D导师:Bing Xu

2007.09 - 2009.06,中山大学,高分子化学与物理,硕士,导师:张黎明

2003.09 - 2007.06,湘潭大学,化学系,导师:王先友

科研项目

纵向项目

[1]史俊峰,国家WR计划QN拔尖,2022/10-2025/10

[2]史俊峰,国家自然科学基金面上项目,2020/01-2023/12

[3]史俊峰,国家自然科学基金青年项目,2020/01-2022/12

[4]史俊峰,湖南省自然科学基金-杰出青年2022/01-2024/12

[5]史俊峰,湖南省科技计划项目,湖湘高层次人才聚集工程-创新人才,2019/08-2022/07

[6]史俊峰,湖南省科技计划项目,湖湘青年英才,2020/12-2023/12

[7]史俊峰,湖南省面上自然科学基金-面上项目,2020/01-2022/12

[8]史俊峰,深圳市基础研究面上项目,2021-2024年

[9]史俊峰,湖南大学YQ培育计划,2021年

横向项目

[1]横向项目,皮肤病治疗多肽制剂的开发,2021-2022年

[2]横向项目,多肽药物开发及制剂研究,2021-2026年

[3]横向项目,多肽药物与疫苗,2022-2025年

学术成果

发表论文

[1]Xia W#, Tingfen D#, Wenbin L*, Hong H, Wei X, Wenjie W, Dan Y, Lisha Z*, Junfeng S*, Xiaoyuan P*. Calcium-responsible injectable peptide hydrogel encapsulating BMSCs for promoting femur regeneration. SCIENCE CHINA Chemistry. 2024.

[2]Wang W, Shi J*. Peptides for Liquid-Liquid Phase Separation: An Emerging Biomaterial. CHEMBIOCHEM. [Journal Article; Review]. 2024 2024-11-21:e202400773.

[3]Feng Y#, Li Z#, Zhu J, Zou C, Tian Y, Xiong J, He Q, Li W, Xu H, Liu L, Xu B, Shi J*, Zhang D*. Stabilization of RRBP1 mRNA via an m6A-dependent manner in prostate cancer constitutes a therapeutic vulnerability amenable to small-peptide inhibition of METTL3. CELL MOL LIFE SCI. 2024;81(1).

[4]Han H, Li Z, Feng Y, Song H, Fang Z, Zhang D, Yuan D, Shi J*. Peptide degrader-based targeting of METTL3/14 improves immunotherapy response in cutaneous melanoma. Angew Chem Int Ed Engl. 2024 Aug 13:e202407381. doi: 10.1002/anie.202407381.

[5]Cai Y, Xiang Y, Dong H, Huang W, Liu Y, Zhao C, Yuan D*, Li Y*, Shi J*. Injectable self-assembling peptide hydrogel as a promising vitreous substitute. J Control Release. 2024,376,402–412 . doi: 10.1016/j.jconrel.2024.10.016.

[6]Li T, Ren X, Luo X, Wang Z, Li Z, Luo X, Shen J, Li Y, Yuan D, Nussinov R, Zeng X*,Shi J*, Cheng F*. A Foundation Model Identifies Broad-Spectrum Antimicrobial Peptides against Drug-Resistant Bacterial Infection. Nat. Commun. 2024 2024-01-01;15(1):7538.

[7]Shang S#, Han H, Liu K, Li Z, Zhang J, Zhang L, Ju D, Wei D, Yuan J, Zhu Z*, Shi J*.Synergistic antitumor activity of METTL3 peptide degrader and immune checkpoint inhibitor in advanced urothelial cancer. J CLIN ONCOL. 2024 2024-05-29;42(16_suppl):e14623.

[8]Wu X#, Shen J#, Jiang X, Han H, Li Z, Xiang Y, Yuan D*, Shi J*. Targeting Glut1 Degradation with Assembling Glycopeptide for Cancer Inhibition. CHEM ENG J. 2024; 493:152479. https://doi.org/https://doi.org/10.1016/j.cej.2024.152479.

[9]Wu, X.#, M. Yan#, J. Shen, Y. Xiang, K. Jian, X. Pan*, D. Yuan*, and J. Shi*. 2024. Enhancing calvarial defects repair with pdgf-bb mimetic peptide hydrogels. Journal of Controlled Release 370: 277-86. doi:https://doi.org/10.1016/j.jconrel.2024.04.045.

[10]Li, Z. #, Y. Feng#, H. Han, X. Jiang, W. Chen, X. Ma, Y. Mei, D. Yuan, D. Zhang*, and J. Shi*. 2024. A stapled peptide inhibitor targeting the binding interface of n6-adenosine-methyltransferase subunits mettl3 and mettl14 for cancer therapy. Angewandte Chemie International Edition n/a: e202402611. doi:https://doi.org/10.1002/anie.202402611.

[11]Ren X#, Wei J#, Luo X, Liu Y, Li K, Zhang Q, Gao X, Yan S, Wu X, Jiang X, Liu M, Cao D, Wei L, Zeng X* and Shi J*. 2024. Hydrogelfinder: a foundation model for efficient self-assembling peptide discovery guided by non-peptidal small molecules. Advanced Science n/a: 2400829. doi:https://doi.org/10.1002/advs.202400829.

[12]Lopez-Silva, T. L.; Samdin, T. D.; Anderson, C. F.; Bell, D. R.; Suarez Alvarez, E.; Kasprzak, W. K.; Shi, J. *; Schneider, J*. P. Impact of glycosylation on self-assembled peptide hydrogels. Chem. Mater. 2024, DOI: 10.1021/acs.chemmater.4c00291.

[13]Deng, T.; Xie, W.; Huang, X.; Wu, X.; Shen, X.; Shi, J*.; Yuan, D*. A dual-responsive peptide hydrogel protects normal cells from anticancer drug treatments. ACS Applied Nano Materials 2024, 7(5), 5124-5131, DOI: 10.1021/acsanm.3c05815.

[14]Chen, W.; Li, Z.; Zhao, C.; Zha, L.; Shi, J*.; Yuan, D*. Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chem. Lett. 2024, 109628, DOI: https://doi.org/10.1016/j.cclet.2024.109628.

[15]Zhou, J.; Cai, Y.; Li, T.; Zhou, H.; Dong, H.; Wu, X.; Li, Z.; Wang, W.; Yuan, D*.; Li, Y*.; Shi, J*. Aflibercept loaded eye-drop hydrogel mediated with cell-penetrating peptide for corneal neovascularization treatment. Small 2024, 20(2), 2302765, DOI: https://doi.org/10.1002/smll.202302765.

[16]Chen, S. #; Li, Z. #; Zhang C. #; Wu, X.; Wang, X.; Chen, W.; Shi, J.*; Yuan, D.* Cation-π interaction trigger Supramolecular Hydrogelation of Peptide Amphiphiles. Small, 2023;19:e2301063.

[17]Zhu C, Li T, Wang Z, Li Z, Wei J, Han H, Yuan D, Cai M, * Shi J.*, MC1R Peptide Agonist Self-Assembles into a Hydrogel That Promotes Skin Pigmentation for Treating Vitiligo. ACS Nano. 2023;17:8723-8733.

[18]Li T, Zhu C, Liang C, Deng T, Wu X, Wen K, Feng X, Yuan D, Xu B, * Shi J.*, Surface-Induced Peptide Nanofibers for Selective Bacteria Trapping. ACS Applied Nano Materials. 2023;6:7785-7793.

[19]Dong H., Wang M., Fan S., Wu C., Zhang, C. Wu X., Xue B., Cao Y., Deng J., Yuan D.,* Shi J.*, Redox-Regulated Conformational Change of Disulfide-Rich Assembling Peptides. Angew. Chem. Int. Ed., 2022, e202212829

[20]Jian, K.#, Yang, C.#, Li, T., Wu, X., Shen, J., Wei, J., Yang, Z., Yuan, D.*, Zhao, M.*, Shi, J.*, PDGF-BB-Derived Supramolecular Hydrogel for Promoting Skin Wound Healing. J. Nanobiotechnology, 2022, 20(1)

[21]Zou, C.; Wan, Y.; He, L.; Zheng, J. H.; Mei, Y.; Shi, J.; Zhang, M.; Dong, Z.; Zhang, D., RBM38 in cancer: role and mechanism. Cell Mol Life Sci 2021, 78 (1), 117-128.

[22]Chen, Y.; Liu, X.; Guo, Y.; Wang, J.; Zhang, D.; Mei, Y.; Shi, J.; Tan, W.; Zheng, J. H., Genetically engineered oncolytic bacteria as drug delivery systems for targeted cancer theranostics. Acta Biomater 2021, 124, 72-87.

[23]Poulami, M.; Anand, S.; Ziqiu, W.; Kingshuk, D.; Roma, P.; Chen, L.; Caroline, A.; L, P. N.; Junfeng, S.; Natalia, d. V.; R, W. S. T.; Byungyun, J. A.; Baktiar, K.; D, H. C.; P, S. J., Surface-fill hydrogel attenuates the oncogenic signature of complex anatomical surface cancer in a single application. Nature nanotechnology 2021, 16 (11).

[24]Shy, A. N.; Li, J.; Shi, J.; Zhou, N.; Xu, B., Enzyme-instructed self-assembly of the stereoisomers of pentapeptides to form biocompatible supramolecular hydrogels. J Drug Target 2020, 28 (7-8), 760-765.

[25]Shi, J.F., Schneider J.P.*, “De novo design of selective membrane-active peptides via enzymatic control of their conformational bias on the cell surface”, Angew. Chem. Int. Ed.,. 2019, 58, 13706 –13710

[26]Shi, J.F., Fichman G., Schneider J.P.*, “Enzymatic Control of the Conformational Landscape of Supramolecular Assembling Peptides”, Angew. Chem. Int. Ed. 2018, 57, 11188-11192.

[27]Haburcak, R.#; Shi, J.F#; Du, X.; Yuan, D.; Xu, B.*, Ligand-Receptor Interaction Modulates the Energy Landscape of Enzyme-Instructed Self-Assembly of Small Molecules. J. Am. Chem. Soc. 2016, 138,47, 15397. (#共同一作)

[28]Shi, J.; Du, X.; Huang, Y.; Zhou, J.; Yuan, D.; Wu, D.; Zhang, Y.; Haburcak, R.; Epstein, I. R.; Xu, B.*, Ligand-Receptor Interaction Catalyzes the Aggregation of Small Molecules to Induce Cell Necroptosis. J Am Chem Soc,2015,137, 1, 26-29

[29]Shi, J.F.; Xu, B.*, Nanoscale assemblies of small molecules control the fate of cells. Nano Today 2015, 10 (5), 615-630.(IF=17)

[30]Yuan, D.#; Shi, J. F.#; Du, X. W.; Zhou, N.; Xu, B.*, Supramolecular Glycosylation Accelerates Proteolytic Degradation of Peptide Nanofibrils. J Am Chem Soc, 2015, 137 (32), 10092-10095. (#共同一作,亮点文章)

[31]Shi, J.; Du, X.; Yuan, D.; Haburcak, R.; Wu, D.; Zhou, N.; Xu, B.*, Enzyme transformation to modulate the ligand–receptor interactions between small molecules. Chem Commun 2015, 51 (23), 4899-4901.

[32]Shi, J. F.; Du, X. W.; Yuan, D.; Haburcak, R.; Zhou, N.; Xu, B.*, Supramolecular Detoxification of Neurotoxic Nanofibrils of Small Molecules via Morphological Switch. Bioconj. Chem. 2015, 26 (9), 1879-1883.

[33]Shi, J.; Du, X.; Yuan, D.; Zhou, J.; Zhou, N.; Huang, Y.; Xu, B.*, d-Amino Acids Modulate the Cellular Response of Enzymatic-Instructed Supramolecular Nanofibers of Small Peptides. Biomacromolecules 2014, 15 (10), 3559-3568.

[34]Shi, J.F.; Yuan, D.; Haburcak, R.; Zhang, Q.; Zhao, C.; Zhang, X.; Xu, B.*, Enzymatic Dissolution of Biocomposite Solids Consisting of Phosphopeptides to Form Supramolecular Hydrogels. Chemistry – A European Journal 2015, 21(50), 18047-18051.

[35]Shi, J.; Gao, Y.; Yang, Z.; Xu, B.*, Exceptionally small supramolecular hydrogelators based on aromatic–aromatic interactions. Beilstein J. Org. Chem. 2011, 7 (1), 167-172.

[36]Shi, J.; Gao, Y.; Zhang, Y.; Pan, Y.; Xu, B.*, Calcium ions to cross-link supramolecular nanofibers to tune the elasticity of hydrogels over orders of magnitude. Langmuir 2011, 27 (23), 14425-14431.

[37]Huang, Y. #; Shi, J.#; Yuan, D.; Zhou, N.; Xu, B.*, Length‐dependent proteolytic cleavage of short oligopeptides catalyzed by matrix metalloprotease‐9. Pept. Sci. 2013, 100 (6), 790-795. (#共同一作)

[38]Shi, J.; Pan, Y.; Gao, Y.; Xu, B.*, Evaluation of the effects of phenylalanine and carboxylate on the rheological behaviors of small molecule hydrogelators containing naphthalene. MRS Proceedings 2012, 1418, mrsf11-1418-ll06-03.

[39]Wang, H.; Shi, J.F; Feng, Z.; Zhou, R.; Wang, S.; Rodal, A. A.; Xu, B.*, An in-situ Dynamic Continuum of Supramolecular Phosphoglycopeptides Enables Formation of 3D Cell Spheroids. Angew. Chem. Int. Ed. 2017, 56 (51), 16297-16301 (VIP, 5%)

[40]Hu, X. R.; Shi, J. F.; Thomas, S. W.*, Photolabile ROMP gels using ortho-nitrobenzyl functionalized crosslinkers. Polym. Chem. 2015, 6 (27), 4966-4971

[41]Kuang, Y.; Shi, J.F.; Li, J.; Yuan, D.; Alberti, K. A.; Xu, Q.; Xu, B.*, Pericellular Hydrogel/Nanonets Inhibit Cancer Cells. Angew. Chem. Int. Ed. 2014, 53 (31), 8104-8107. (高被引文章, C&EN报道)

[42]Yuan, D.; Shi, J.F.; Du, X.; Huang, Y.; Gao, Y.; Baoum, A. A.; Xu, B*., The enzyme-instructed assembly of the core of yeast prion Sup35 to form supramolecular hydrogels. J. Mater. Chem. B 2016, 4 (7), 1318-1323

[43]Gao, Y.; Shi, J.; Yuan, D.; Xu, B.*, Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nat. Commun. 2012, 3, 1033. (高被引文章)

[44]Li, J.; Shi, J.F; Medina, J. E.; Zhou, J.; Du, X.; Wang, H.; Yang, C.; Liu, J.; Yang, Z.; Dinulescu, D. M.; Xu, B.*, Selectively Inducing Cancer Cell Death by Intracellular Enzyme-Instructed Self-Assembly (EISA) of Dipeptide Derivatives. Adv Healthc Mater 2017, 6 (15), 1601400.

[45]Du, X.; Zhou, J.; Shi, J.F.; Xu, B.*, Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chem. Rev., 2015, 115, 24, 13165-13307. (高被引文章, IF=52.61)

[46]Du, X.; Zhou, J.; Wang, H.; Shi, J.; Kuang, Y.; Zeng, W.; Yang, Z.; Xu, B.*, In situ generated D-peptidic nanofibrils as multifaceted apoptotic inducers to target cancer cells. Cell Death Dis. 2017, 8, e2614

[47]J. Zhou, X. Du, C. Berciu, H. He, J. Shi, D. Nicastro and B. Xu*, Enzyme-Instructed Self-Assembly for Spatiotemporal Profiling of the Activities of Alkaline Phosphatases on Live Cells, Chem, 2016, 1, 246-263.

[48]Z. Feng, H. Wang, X. Du, J. Shi, J. Li and B. Xu*, Minimal C-terminal modification boosts peptide self-assembling ability for necroptosis of cancer cells, Chem. Commun., 2016, 52, 6332-6335.

[49]Li, J.; Kuang, Y.; Shi, J. F.; Zhou, J.; Medina, J. E.; Zhou, R.; Yuan, D.; Yang, C. H.; Wang, H. M.; Yang, Z. M.; Liu, J. F.; Dinulescu, D. M.; Xu, B.*, Enzyme-Instructed Intracellular Molecular Self-Assembly to Boost Activity of Cisplatin against Drug-Resistant Ovarian Cancer Cells. Angew Chem Int Ed., 2015, 54 (45), 13307-13311.

[50]Yuan, D.; Du, X.; Shi, J.; Zhou, N.; Zhou, J.; Xu, B.*, Mixing Biomimetic Heterodimers of Nucleopeptides to Generate Biocompatible and Biostable Supramolecular Hydrogels. Angew. Chem. Int. Ed. 2015, 54, 5705-5708

[51]Zhang, Y.; Zhou, N.; Shi, J.; Pochapsky, S. S.; Pochapsky, T. C.; Zhang, B.; Zhang, X.; Xu, B.*, Unfolding a molecular trefoil derived from a zwitterionic metallopeptide to form self-assembled nanostructures. Nat commun. 2015, 6, 6165

[52]Wu, D.; Du, X.; Shi, J.; Zhou, J.; Zhou, N.; Xu, B.*, The first CD73-instructed supramolecular hydrogel. J Colloid Interf Sci, 2015, 447, 269-272

[53]Wu, D.; Zhou, J.; Shi, J.; Du, X.; Xu, B.*, A naphthalene-containing amino acid enables hydrogelation of a conjugate of nucleobase–saccharide–amino acids. Chem Commun 2014, 50 (16), 1992-1994.

[54]Zhao, F.; Li, J.; Zhou, N.; Sakai, J.; Gao, Y.; Shi, J.; Goldman, B.; Browdy, H. M.; Luo, H. R.; Xu, B.*, De Novo Chemoattractants Form Supramolecular Hydrogels for Immunomodulating Neutrophils In Vivo. Bioconj. Chem. 2014, 25 (12), 2116-2122.

[55]Zhang, Y.; Zhang, B.; Kuang, Y.; Gao, Y.; Shi, J.; Zhang, X. X.; Xu, B.*, A Redox Responsive, Fluorescent Supramolecular Metallohydrogel Consists of Nanofibers with Single-Molecule Width. J Am Chem Soc, 2013, 135(13), 5008-5011.

[56]Li, J.; Kuang, Y.; Gao, Y.; Du, X.; Shi, J.; Xu, B.*, D-Amino acids boost the selectivity and confer supramolecular hydrogels of a nonsteroidal anti-inflammatory drug (NSAID). J Am Chem Soc, 2012, 135 (2), 542-545. (高被引文章, C&EN报道)

[57]Pan, Y.; Gao, Y.; Shi, J.; Wang, L.; Xu, B.*, A versatile supramolecular hydrogel of nitrilotriacetic acid (NTA) for binding metal ions and magnetorheological response. J. Mater. Chem. 2011, 21 (19), 6804-6806.

[58]Li, X.; Kuang, Y.; Lin, H. C.; Gao, Y.; Shi, J.; Xu, B.*, Supramolecular nanofibers and hydrogels of nucleopeptides. Angew. Chem. Int. Ed. 2011, 50 (40), 9365-9369.

[59]Kuang, Y.; Gao, Y.; Shi, J.; Lin, H.-C.; Xu, B.*, Supramolecular hydrogels based on the epitope of potassium ion channels. Chem Commun 2011, 47 (31), 8772-8774.

[60]Li, X.; Kuang, Y.; Shi, J.; Gao, Y.; Lin, H.-C.; Xu, B.*, Multifunctional, biocompatible supramolecular hydrogelators consist only of nucleobase, amino acid, and glycoside. J Am Chem Soc, 2011, 133 (43), 17513-17518.

[61]Huang, Y.; Qiu, Z.; Xu, Y.; Shi, J.; Lin, H.; Zhang, Y.*, Supramolecular hydrogels based on short peptides linked with conformational switch. Org. Biomol. Chem. 2011, 9 (7), 2149-2155.

[62]Song, F.; Zhang, L.-M.*; Li, N.-N.; Shi, J.-F., In situ crosslinkable hydrogel formed from a polysaccharide-based hydrogelator. Biomacromolecules 2009, 10 (4), 959-965.

发明专利

[1]Xu, B.; Shi. J.F.; Kuang. Y.; “Synthetic peptides, enzymatic formation of pericellular hydrogels/ nanofibrils, and methods of use” US11155576B2

奖励与荣誉

[1]2019年 湖南大学“岳麓学者”

[2]2019年 湖湘高层次人才聚集工程-创新人才

[3]2020年 芙蓉青年学者

[4]2020年 湖湘青年英才

[5]2022年 湖南省杰出青年基金,

[6]2022年 国家WR计划“QN拔尖人才”

联系我们

    湖南大学-国家卓越工程师学院 版权所有

    校址:湖南省长沙市岳麓区麓山南路麓山门 | 邮箱:zgxy@hnu.edu.cn | 邮编:410082

    湘教QS4-201312-010059   湘ICP备09007699号

  • 微信公众号